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Abstract

Solutions of stochastic differential equations having differentials of

bounded variation processes on the right hand side can be defined by means of

LebesgueStieltjes integrals or by continuous extension of Stieltjes integrals. Both

solutions are compared here and formulas that extend the Wong-Zakai theorem

are obtained.

Key words and phrases: stochastic equations, Stratonovich integration,
Wong-Zakai Theorem.
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Si. Introduction

Solutions of stochastic differential equations having differentials of

bounded variation processes on the right hand side are usually defined by

means of pathwise Lebesgue-Stieltjes integrals (see, for example, Meyer [2]).

Partially motivated by stochastic control problems we have introduced a

different idea of solution in Ferreyra [1]. With this notion, the change of

variables formula for solutions of stochastic differential equations driven by

certain semimartingales is not complicated by the jumps of the processes

involved. In fact, our interpretation is an extension of the concept of solution

of stochastic differential equations in Stratonovich sense, together with the usual

change of variables formula. Moreover, robustness in the driving process is

built into this definition of solution. Hence results complementary to those

considering approximation of driving martingales such as in Protter [41 and

Picard [3] follow.

In this paper we obtain formulas relating both definitions of solutions.

These formulas are in the vein of the theorems of Wong-Zakai 15].

We introduce the necessary notation and definitions in Section 2 along

with some material from Ferreyra (1]. We explain the goal of this paper once

more at the end of Section 2. In Section 3 a simple example is presented.

Finally, Section 4 gives several formulas of the Wong-Zakai type.

S2. Notation, prerequisites and hypotheses

Let (RT,P) be a complete probability space together with an increasing

family of sub o-algebras Ft, 0 4 t 4 T < -, such that To contains all P-null

elements of T, and Ft, 0 4 t 4 T, is right-continuous, that is, t = 't+ - n To,
tcs<T



-2-

for all t.

Two processes X(t), and Y(t), 0 4 t 4 T, are identified if they are

indistinguishable, i.e., for almost all w e ni the equality X(tw) - Y(t,w) holds

for all t. A process with paths which are continuous on the right

(respectively, left) and have limits on the left (respectively, right) will be called

corlol (respectively, collor). Other authors use the French versions cadlag and

caglad respectively. We assume that all martingales (but not all processes) are

corlol. If X(t), 0 ( t ( T is a corlol or a cadlag process, then &X(t)

denotes the jump X(t+) X(t-) at t. Two a-fields on (0,T] x fi are of

importance to us. The optional a-field E0  which is generated by the family of

all adapted corlol processes and the predictable a-field E which is generated

by the adapted collor processes. A process X(t), 0 4 t 4 T, is said to be

optional (respectively, predictable) if it is Eo-measurable (respectively,

Ep-measurable). A process is said to be of bounded variation if it is adapted,

corlol, and it has paths of bounded variation. A process of bounded variation

A(t), 0 ( t ( T, is said to be of integrable variation if EJ IdA(s)I < . It

is assumed that A(t) - 0, t < 0. If A(t), 0 ( t 4 T is of integrable

variation and H(t), 0 4 t 4 T, is an optional process such that

EfoIH(s) IdA(s)I < -, then the stochastic integral I(t) - 0H(s)dA(s) is well

defined as a pathwise Lebesgue-Stieltjes integral (cf. Meyer [2], p.258). The

process I(t), 0 4 t 4 T, turns out to be adapted, continuous on the right and of

integrable variation. An adapted process M(t), 0 ( t ( T, vanishing at zero is

called a local martingale if there exist stopping times Tn t T such that the

T
stopped process M n(t) = M(t A T) are uniformly integrable martingales. An

adapted process Z(t) is a semimartingale if it admits a decomposition of the
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form Z(t) - Z(0) + M(t) + A(t), where M(t) is a local martingale vanishing

at zero, and A(t) is a process of bounded variation vanishing at zero. If Z(t)

is a semimartingale, ZC(t) will denote its continuous part. If M(t) is a square

integrable martingale we let <MM>(t) denote the unique increasing predictable

process such that <MM>(0) - M2(0) and M2(t) _ <MM>(t) is a martingale. If

M(t) and N(t) are both square integrable mnartingales, then <MN>(t)

2<<M + N, M + N>(t) - cMM>(t) - .cN,N>(t)) is the unique predictable process

of integrable variation such that <M,N>(0) - M(O)N(O) and M(t)N(t) -

<M,N>(t) is a martingale. We are ready now to state Ito's rule for

semimartingales.

Theorem (Meyer [21, p. 301): Let Z(t) be an An'-valued process such that each

one of its components Z(t), i - 1,... ,n, is a semimartin gale. Let F e A

Then F(Z(t)) is a semimartin gale and

(1) F(Z(t)) - F(Z(O)) + E (Z s)dZ'(s)

+~~~ ar MZs)dciZJ()
ij1 0 i j

0 t 81Fa

(2) dX(t) = f(X(t))Odu(t) + g(X(t))dt + E a..AX(t)) .dWv(t)
V=1

11 11:-4Im11 Ip V ~ % . ~ V y~
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will be given below when we define what is meant by solving (2) with initial

condition

(3) X(O) - X.

Let the process (W(t),.. .,WJ(t)), 0 4 t ( T, be a given J-dimensional Brownian

motion. Assume that u(t), 0 4 t 4 T, belongs to the set U of real valued,

uniformly bounded, collor processes. Assume, without loss of generality, that all

processes v - U satisfy v(O) = 0. Assume that u(t) - 0, for t < 0. The

unknown process X(t), 0 4 t 4 T, has values in An. Furthermore, assume

(Hi) EIXIP < ', for some p > 2,

(H2) f E C3(pn), fx C C2(A),

(H3) g e C(E~n), and

(H4) ov  C c(CA), v _ 1,.. .J.

Let Z denote the set of adapted real valued processes v(t), 0 4 t 4 T,

having Lipschitz paths with a uniform Lipschitz constant. If u(t) = v(t) e Z,

then X(t) is said to solve (2) if

dv
(4) dX(t) - f(X(t)) --(t)dt + g(X(t))dt + Z o(X(t))o dWv(t)

in Stratonovich sense. It is well known that for such v(t) e t, the problem

(3) - (4) has a unique solution. This concept of solution is extended to allow

all u E U as follows. .

Definition I: An An-valued process X(t), 0 4 t 4 T, is said to be a solution of

(2) - (3) if there exists a map r : [0,T] x U x fn - n such that

(DI) for each v 4 U, r(tv), 0 4 t 4 T, is collor,

-w q~q



(D2) if v C- ., then the process T(t,v) solves (4) in Stratonovich sense,

(M3) if v E- U and (v j) is a uniformly bounded sequence of elements in U

such that for every t, 0 4 t 4 T, v,(t) -v(t), a.s., then for each t,

E Ir(t,v2 ) - r(t,v) 12 -0, as .j

(D4) r(t,u) - X(t), 0 ( t 4 T, and

(D5) for all v c- u, r(0,v) ax.

The extension from X to U is aided by the following.

Lemma I (Ferreyra [I]): Let u C- U, and let u, (t) - if t/ u(s)ds. Then (u,)

is a uniformly bounded sequence of elements in X such that for each t,

Given u G U, the problem (2) -(3) is shown to have a unique solution in

Ferreyra [1]. We sketch here the proof of existence. Let F : A x ' - P, be

the flow of f, that is, the solution of &(s,x) - f(F(s,x)), F(0,x) - x. Let

j(s,x) - [a(s,x) 1 g(F(s,x)), and '5vs,x) - r[*(s,x)]1 o,(F(s,x)). Then r is

def ined by

(5) r(t,v) - F(v(t),Y(t)),

where Y(t) is the process with continuous paths satisfying

J
(6) dY(t) -j(v(t),Y(t))dt + E *5/v(t),Y(t))dW"(t),

v=I

(7) Y(0) -X.

The proof of (D2) follows easily by application of the rule for change of

variables for Stratonovich integrals. The proof of (D3) is a little more

complicated. Basically, it involves estimates for F, its partial derivatives of
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first order, and estimates for Y(t). The reader is referred to Ferreyra [11 for

more details.

Finally, we restate the goal of this paper. We intend to find an

expression for X(t), the solution of (2) - (3), in terms of integrals of

Lebesgue-Stieltjes and Ito type such as those appearing in (1).

S3. A simple example

To clarify the relation between (1) and (2) we consider the following

deterministic example. Let T - 3, u- - ](,]+ '(2,3], and u+ . 1 [i,31 + '(2,3]1

where for A C [0,31, 1A denotes the characteristic function of the set A.

Consider the 2-dimensional system of the type of (2) - (3)

dX1(t) - I - du-(t), X '(O) - 0,

dX2(t) . 4O(XI(t)) 0 du-(t), X 2(0) _ 0,

where i1Vx) = 3x.

The solution of this system is computed using Definition I as follows.

Let u (P) - j(t-l + l/i)I(11j11/~(t) + j(t-2 + l/j)I(2-1/j2(t) + u-(t). Then solve by

standard methods

du.
dXJ.t) - - (t) dt, X (0) - 0,

dt

dX~(t) - #(Xjkt)) d-- (t)dt, X (0) - 0.

Finally, take the limit as j .Hence

XW -tup), Xj2.tJ - 4<(~s))duj(s) - it].
LJ. 

5,f

X1(t)- u~), X~t) [U-tS]3

K,~ pp -
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*On the other hand the 2-dimensional system of the type of (1) (3)

dY'(t) - du+(t), Y'(O) - 0

dy 2(t) . J<'( 1 t)du+(t), y(0) _ 0

is solved by means of Lebesgue-Stieltjes integrals as

Y 1(t) u ()

Y 1(t) J <Pu+(s))du+(s) - f0[(-]2u()
J00

Thus X 2(t) jumps I unit at t - I and 7 units at t -2, while y 2(t)

jumps 0 units at t = I and 3 units at t - 2. The difference between X2(t)

and y 2(t) can be deduced from (1). In fact,

X2(t) _y 2(t) = ~[[U+(S)]s 3- [U+(S-)]3 - 3[U+(S-)]2&U+(S)) _ AX2(t)

=E12(S+) - X2/S) [X 3[2(S)] 1,U (S)} -[X 2(t)]2 &u-(t).

We will prove below several generalizations of this formula.

S4. Stochastic integrals and stochastic differential equations

In the previous section we f ound a f ormula relating X 1(t)

- li 0~iiu()d 2 s n h Lebesgue-Stieltjes integral y (t) .

- Jo' 4u+(s))du+(s). More general situations are treated here.

We assumie throughout this section that u(t), 0 4 t ( T, is a fixed proces

in U such that it has paths of bounded variation. Hence the process ut)

o 4 t < T, is well defined and it is of bounded variation. Let u)

j - 1,2,-.-., 0 t t ( T, be a sequence of processes in r approximating u(t)

in the sense of Lemma 1, that is, for each 0 ( t ( T, u,(t) converges to u(t),

a.s. asj.



Theorem 1: Let f - #p(t,x) be a real valued function in C1([O,T] x IR). Then.

for each 0 ( t 4 T,

J t

lrn 1f(s'u,(s))du,(s) = tiO,u(O+)) + + cp(s,u(s))du(s +)
j-6M JO0

+ E [i~s,u(s+)) 4 (s,u(s)) - ,(S,U(S))Au(s)] - Y(t'u(t))A&u(t),
0<0<t

where 4(t,x) - fo p(t,k)dt.

Proof: Let i be defined as above. Then, by the calculus for Riemann-

Sticltjes integrals

4Kt'(uj(t)) T (su,(s))du,(s) + J (s,u,(s))ds.
fo 0

Since for each 't, 0 4 t ( T, u,(t) - u(t), a.s. as j ,then our hypotheses on

9 and the Dominated Convergence Theorem imply

t 
jit s~~))s

(8) iPKt,u(t)) = im J (Su,(s))du,(s) +J (su)d.

But (1) with n - 2, Z1(t) =t, ZI(t) - u(t+) imply

jt lt

(9) 4(t,u(t+)) = 4<0,U(0+) + Jo %*(s,u(s))du(s+) + J g (s,u(s))ds

+ I: F[q~s,u(s+y, - <1'(sus)) - ($s'u(s))A&u(s)].

Comparison of (8) and (9) prove the desired formula.

The above theorem is further generalized as follows. Let EV C([0,TJ),

v 1 , , and define

t 
J t

SMt) - Jos)du(S) + E f 0.4s) 0dWv(s).
0=
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Here a and 0. are deterministic functions, the first integral is pathwise of

Riemann-Stieltjes type and the integrals with respect to WV are of

Stratonovich (equal to ito in this case) type. Let if - if(t,x) G C2(rO,T) x )

and consider the stochastic integral

Jf(ss))*ds) - f(sSj(s))cs)du,(s)

+ 1: f(sS,(s))04s) * dWv(s).
v=1 0

Finally, define the (collor) process

S(t) - Ja(s)du(s) + i J8ISAs)dWv(s),
0o V=1 0

where the first integral is of Riemann-Stieltjes type and the other J integrals

are o t (equal to Stratonovich in this case) type.

Theorem 2. Lei 4I't,x) - Jt,9)dW. Then, for each 0 4 t C T, the following

relation holds.

lim J f(sS(s)) 0dS.(s) - O(()) + 4p(s,S(s))dS(s+) + -L EJ -(,s)8(sd
0- JO 0+ V=If 0 sSs)Osd

+ E [4s'(sS'+) - Ol(sS(S)) - V(sS(s))AS(s)] - yf(tS( )as( t.

Proof. By the calculus for Stratonovich integrals
It

i<t'Sp()) - J(SS(s)) 0 dSj(s) + f (s,Sj(s))ds.

Theorem I implies that

t t t

1i ~~ds - 0(0)u(0+)+ J~s)du(s+) - at)Aumt - f~s)du(s).

J-0 -o JO -
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Then, for each 0 4 t 4 T, Sj(t) -S(t), a.s. as j .Hence the Dominated

Convergence Theorem implies

(10)~~ ~~ jetS~) - rnJ(sj(s)) 0 dS,(s) +f '(s,S(s))ds.
Y 0 0

On the other hand, (1) with n - 2 and ZI(t) - t, Z2(t) -S(t+) giVe

(11) it't,S(t+)) - O(0,S(0+)) + Jf(s,S(s))dS(s+) + jE J (s,S(s))BZ(s)ds

+ J if (s,S(s))ds + r. [4i<s,S(s+)) - 4i<s,S(s)) - #f(s,S(s))AS(s)].
0<44t

Putting (10) and (11) together we obtain our result.

Theorem 3: Let X(t), 0 4 t 4 T, be the solution of (2) - (3) in the sense of

Definition 1. Then

(12) X (t) =X + + f(X(s))du(s+) + J(X(s))ds + E J o(X(s))dWv(s)
0+ fo V--1 0

+~E I J jx- (X(s))oV/X(s))ds + X AX(s) - Z f(X(s))Au(s).
i= IV--1 0 048<t 0<84t

Proof: The solution of (2) - (3) can be expressed, according to (5)- (7), as

(13) X(t) - F(U(t),Y(t)),

where F is the f low of f and Y(t), 0 4 t 4 T, is the continuous

semimartingale solution of Y(0) - X. dY(t) - j(u(t),Y(t))dt +

+ E F(u(t),Y(t))dWV(t). As indicated at the beginning of this section, the
V--

process u(t+), 0 4 t <T, is of bounded variation. Then, it follows from (1)



that-

thtX(t+) F(u(O+),Y(O)) + &E (u(S),Y(s))du(s+) + E J 6~(U(sXY(s))dY' (s)

ij=1 0

* 1: [F(u(S+),Y(s)) - F(u(s).Y(s)) - F-(u(s),Y(s))Au(s)].
0<8(t

The following equalities arc used to replace the various terms in the above

equation. It is easy to see that

F(u(s+),Y(s)) F(u(s),Y(s)) - AX(s),

F(u(O+ ),Y(O)) -X + AX(O),

Xt - X(t) + AX(t),

&E(u(s),Y(s)) - f(F(u(s),Y(s))) - fXs)

, (u(s),y(s))i(u(s),y(s)) g~s)

Jx (u(s),y(s))-,(u(s),y(s)) 0,A- s)

and

I: x. (u(s),Y(s)) E E jiL(x ),~)~(us,~)

- ~ -u(s),X(s)) dcYi,YJ>(s) + I X jx-1 (X(S))c9v(X(s)).
ij=1 V=1 1=1 '

In the last equality we used the identity obtained from differentiation of

F,(s,x)F,(s,x)-l - I with respect to x. The proof of (12) is then concluded.

Acknowledgement: The author wishes to thank P. Dupuis for his valuable 1

comments.
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